The publications, reports and notes listed here were sponsored in whole or part by the Forest Modeling Research Cooperative or by a project in the Department of Forest Resources and Environmental Conservation, Virginia Tech, with objectives closely aligned with those of the Cooperative.

Selected (from 2010) Journal Articles, Papers in Proceedings, Book Chapters, and Bulletins

  • Burkhart, H.E. and Yang, S.I., 2022. A retrospective comparison of carrying capacity of two generations of loblolly pine plantations. Forest Ecology and Management, 504, p.119834.
  • Green, P.C., Burkhart, H.E., Coulston, J.W. and Radtke, P.J., 2020. A novel application of small area estimation in loblolly pine forest inventory. Forestry: An International Journal of Forest Research, 93(3), pp.444-457.
  • Arias-Rodil, M., U. Diéguez-Aranda, and H.E. Burkhart. 2017. Effects of measurement error in total tree height and upper-stem diameter on stem volume prediction. For. Sci. 63:250-260.
  • Burkhart, H.E., A.M. Brunner, B.J. Stanton, R.A. Shuren, R.L. Amateis, and J.L. Creighton. 2017. An assessment of potential of hybrid poplar for planting in the Virginia Piedmont. New Forests. 48:479-490.
  • Yang, S. and H.E. Burkhart. 2017. Estimation of carrying capacity in loblolly pine (Pinus taeda L.) For. Ecol. and Manage. 385:167-176. Scolforo, H.F., F. Castro Neto, J.R.S.Scolforo, H.E. Burkhart, J.P. McTague, M.R. Raimundo, R.A. Loos, S. Foneeca, and R.C. Sartório. 2016. Modeling dominant height growth of eucalyptus plantations with parameters conditioned to climate variations. For. Ecol. and Manage. 380:182-195.
  • Thapa, R., H.E. Burkhart, J. Li, and Y. Hong. 2016. Modeling clustered survival times of loblolly pine with time-dependent covariates and shared frailties. J. Agric., Biol., and Env. Stat. 21:92-110.
  • Allen, MG. and H.E. Burkhart. 2015. A comparison of alternative data sources for modeling site index in loblolly pine
    plantations. Can. J. For. Res. 45: 1026-1033.
  • Gyawali, N. and H.E. Burkhart. 2015. General response functions to silvicultural treatments in loblolly pine plantations. Can. J. For. Res. 45:252-265.
  • Li, J., Y. Hong, R. Thapa and H.E. Burkhart. 2015. Survival analysis of loblolly pine trees with spatially correlated random effects. Jour. Am. Stat. Assoc. 110(510):486-502.
  • Sabatia, C.O. and H.E. Burkhart. 2015. On the use of upper stem diameters to localize a segmented taper equation to new trees. For. Sci. 61:411-423.
  • Thapa, R. and H.E. Burkhart. 2015. Modeling stand-level mortality of loblolly pine (pinus taeda L.) using stand, climate and soil variables.For. Sci. 61:411-423.
  • Amateis, R.L. and C.A. Carlson. 2014. Modeling diameter class removals for thinned loblolly pine (Pinus taeda) plantations. For. Ecol. Manag. 327:26-30.
  • Sabatia, C.O. and H.E. Burkhart. 2014. Predicting site index of plantation loblolly pine from biophysical variables. For. Ecol. Manag. 326:142-156.
  • Amateis, R.L. and H.E. Burkhart. 2013. Relating quantity, quality and value of lumber to planting density for loblolly pine
    plantations. South. J. Appl. For. 37:97-101.
  • Amateis, R.L., H.E. Burkhart and Gi Young Jeong. 2013. Modulus of elasticity declines with decreasing planting density for loblolly pine (Pinus taeda) plantations. Ann. For. Sci. 70:743-750.
  • Burkhart, H.E. 2013. Comparison of maximum size-density relationships based on alternate stand attributes for predicting tree numbers and stand growth. For. Ecol. Manag. 289:404-408.
  • Sabatia, C.O. and H.E. Burkhart. 2013. Modeling height development of loblolly pine genetic varieties. For. Sci. 59:267-277.
  • Sabatia, C.O. and H.E. Burkhart. 2013. Height and diameter relationships and distributions in loblolly  pine stands of
    enhanced genetic  material. For. Sci. 59:278-289.
  • Amateis, R.L. and H.E. Burkhart. 2012. Rotation-age results from a loblolly pine spacing trial. South. J. Appl. For. 36:11-18.
  • Antón-Fernández, C., H.E. Burkhart and R.L. Amateis. 2012. Modeling the effects of initial spacing on stand basal area development of loblolly pine. For. Sci. 58:95-105.
  • Burkhart, H.E. and M. Tomé. 2012. Modeling Forest Trees and Stands. Springer, 457 p.
  • Russell, M.B., H.E. Burkhart, R.L. Amateis and S.P. Prisley. 2012. Regional locale and its influence on the prediction of loblolly pine diameter distributions. South. J. Appl. For. 36:198-203.
  • Sabatia, C.O., and H.E. Burkhart. 2012. Competition among loblolly pine trees: Does genetic variability of the trees matter? For. Ecol. Manag. 263:122-130.
  • VanderSchaaf, C.L. and H.E. Burkhart. 2012. Development of planting density-specific density management diagrams for loblolly pine. South. J. Appl. For. 36:126-129.
  • Amateis, R.L. and H.E. Burkhart. 2011. Growth of young loblolly pine trees following pruning. For. Ecol. Manag. 262:2338-2343.
  • Antón-Fernández, C., H.E. Burkhart, M.R. Strub, and R.L. Amateis. 2011. Effects of initial spacing on height development of loblolly pine. For. Sci. 57:201-211.
  • García, O., H.E. Burkhart and R.L. Amateis. 2011. A biologically-consistent stand growth model for loblolly pine in the Piedmont physiographic region, USA. For. Ecol. and Manage. 262:2035-2041.
  • Russell, M.B., R.L. Amateis and H.E. Burkhart. 2010. Implementing regional locale and thinning response in the loblolly pine height-diameter relationship. South. J. Appl. For. 34: 21-27.

Theses and Dissertations (2006 - present)

  • Green, P.C., 2019. Decision support for operational plantation forest inventories through auxiliary information and simulation.
  • Yang, S., 2019. Efficient sampling methods for forest inventories and growth projections.
  • Yang, S., 2016. Estimation and determination of carrying capacity in loblolly pine.
  • Allen, M., 2016. Stand density management for optimal volume production.
  • Corral, G., 2015. Quantifying and mapping spatial variability in simulated forest plots.
  • Thapa, R., 2014. Modeling mortality of loblolly pine plantations.
  • Gyawali, N., 2013.Modeling general response to silvicultural treatments in loblolly pine stands.
  • Sabatia, C.O., 2011. Stand dynamics, growth and yield of genetically enhanced loblolly pine (Pinus taeda L.).
  • Russell, M.B., 2008. Modeling the biomass partitioning of loblolly pine grown in a miniature-scale plantation. M.S.
  • Herring, N. 2007. Sensitivity analysis of FVS-Southern Variant. M.S.
  • Trincado, G. 2006. Dynamic modeling of branches and knot formation in loblolly pine (Pinus taeda L.) trees. Ph.D.
  • VanderSchaaf, C. L. 2006. Modeling maximum size-density relationships. Ph.D.